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Multi-Agent Reinforcement Learning:Independent vs. Cooperative AgentsMing TanGTE Laboratories Incorporated40 Sylvan RoadWaltham, MA 02254tan@gte.comAbstractIntelligent human agents exist in a coop-erative social environment that facilitateslearning. They learn not only by trial-and-error, but also through cooperation bysharing instantaneous information, episodicexperience, and learned knowledge. Thekey investigations of this paper are, \Giventhe same number of reinforcement learningagents, will cooperative agents outperformindependent agents who do not communicateduring learning?" and \What is the pricefor such cooperation?" Using independentagents as a benchmark, cooperative agentsare studied in following ways: (1) sharingsensation, (2) sharing episodes, and (3) shar-ing learned policies. This paper shows that(a) additional sensation from another agent isbene�cial if it can be used e�ciently, (b) shar-ing learned policies or episodes among agentsspeeds up learning at the cost of communica-tion, and (c) for joint tasks, agents engagingin partnership can signi�cantly outperformindependent agents although they may learnslowly in the beginning. These tradeo�s arenot just limited to multi-agent reinforcementlearning.1 INTRODUCTIONIn human society, learning is an essential componentof intelligent behavior. However, each individual agentneed not learn everything from scratch by its own dis-covery. Instead, they exchange information and knowl-edge with each other and learn from their peers orteachers. When a task is too big for a single agent tohandle, they may cooperate in order to accomplish thetask. Examples are common in non-human societiesas well. For example, ants are known to communi-cate about the locations of food, and to move objectscollectively.

In this paper, I use reinforcement learning to study in-telligent agents (Mahadevan & Connel 1991, Lin 1991,Tan 1991). Each reinforcement-learning agent can in-crementally learn an e�cient decision policy over astate space by trial-and-error, where the only inputfrom an environment is a delayed scalar reward. Thetask of each agent is to maximize the long-term dis-counted reward per action.Although most work on reinforcement learning hasfocused exclusively on single agents, we can extendreinforcement learning straightforwardly to multipleagents if they are all independent. They together willoutperform any single agent due to the fact that theyhave more resources and a better chance of receivingrewards. Recently, Whitehead (1991) has also demon-strated the potential bene�t of multiple \complete-observing" cooperative agents over a single agent.However, the more practical study is to compare theperformance of n independent agents with the one ofn cooperative agents and to identify their tradeo�s.Yet, no such study has been done previously. It is thesubject of this paper.How can reinforcement-learning agents be coopera-tive? I identify three ways of cooperation. First,agents can communicate instantaneous informationsuch as sensation, actions, or rewards. Second, agentscan communicate episodes that are sequences of (sen-sation, action, reward) triples experienced by agents.Third, agents can communicate learned decision poli-cies. This paper presents three case studies of multi-agent reinforcement learning involving such coopera-tion and draws some related conclusions that are notlimited to multi-agent reinforcement learning. Themain thesis of this paper is that if cooperation is doneintelligently, each agent can bene�t from other agents'instantaneous information, episodic experience, andlearned knowledge.Speci�cally, in case study 1, I investigate the abilityof an agent to utilize sensation input provided by an-other agent. I demonstrate that sensory informationfrom another agent is bene�cial only if it is relevant
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and su�cient for learning. I show one instance wherecooperative agents were not able to e�ciently learndecision policies (compared with independent agents)due to insu�cient sensation from other agents.Case study 2 focuses on sharing learned policies andepisodes. I show that in these cases cooperation speedsup learning, but does not a�ect asymptotic perfor-mance. I also provide upper bounds on their communi-cation costs incurred during cooperation. While shar-ing policies is limited to homogeneous agents, sharingepisodes can be used by heterogeneous agents as longas they can interpret episodes.Case study 3 concerns joint tasks which require morethan one agent in order to be accomplished. I demon-strate that cooperative agents who sense their partnersor communicate their sensations with each other canlearn to perform the tasks at a level that independentagents cannot reach even though they start out slowly.If a cooperative agent must sense other agents, the sizeof its state space can increase exponentially in termsof the number of involved agents.Ideally, intelligent agents would learn when to coop-erate and which cooperative method to use to achievemaximum gain. This paper is a starting point for theexamination of these fundamental open questions.2 RELATED WORKSeveral multi-agent learning systems have been de-veloped for speed and/or accuracy. GTE's ILS sys-tem (Silver et. al 1990) integrates heterogeneous (in-ductive, search-based, and knowledge-based) learn-ing agents by a central controller through which theagents critique each other's proposals. The MALEsystem (Sian 1991) uses an interaction board (simi-lar to a blackboard) to coordinate di�erent learningagents. DLS (Shaw & Sikora 1990) adopts a dis-tributed problem-solving approach to rule inductionby dividing data among inductive learning agents. Re-cently, Chan and Stolfo (1993) advocate meta-learningfor distributed learning. Most of these systems dealwith inductive learning from examples, rather thanautonomous learning agents that involve perceptionand action. One exception to this is the complexityanalysis of cooperative mechanisms in reinforcementlearning by Whitehead (1991). His main theorem isthat n reinforcement-learning agents who can observeeverything about each other can decrease the requiredlearning time at a rate that is 
(1=n).Recent work in the �eld of Distributed Arti�cial Intel-ligence (DAI) (Gasser & Huhns 1989) has addressedthe issues of organization, coordination, and cooper-ation among agents, but not for multi-agent learn-ing. In the terms of DAI, my case studies 1 and 2explore reinforcement learning in collaborative reason-ing systems (Pope et. al 1992) which are concerned

with coordinating intelligent behavior across multipleself-su�cient agents, and my case study 3 studies rein-forcement learning in distributed problem-solving sys-tems (Durfee 1988, Tan & Weihmayer 1992) in which aparticular problem is divided among agents that coop-erate and interact to develop a solution. Unlike DAI,this work does not deal with issues such as commu-nication language, agent beliefs, resource constraint,and negotiation. It also mainly focus on homogeneousagents.3 REINFORCEMENT LEARNINGReinforcement learning is an on-line technique thatapproximates the conventional optimal control tech-nique known as dynamic programming (Bellman 1957).The external world is modeled as a discrete-time, �-nite state, Markov decision process. Each action isassociated with a reward. The task of reinforcementlearning is to maximize the long-term discounted re-ward per action.In this study, each reinforcement-learning agent usesthe one-step Q-learning algorithm (Watkins 1989).Its learned decision policy is determined by thestate/action value function, Q, which estimates long-term discounted rewards for each state/action pair.Given a current state x and available actions ai, a Q-learning agent selects each action a with a probabilitygiven by the Boltzmann distribution:p(aijx) = eQ(x;ai)=TPk2actions eQ(x;ak)=T (1)where T is the temperature parameter that adjusts therandomness of decisions. The agent then executes theaction, receives an immediate reward r, moves to thenext state y.In each time step, the agent updates Q(x; a) by recur-sively discounting future utilities and weighting themby a positive learning rate �:Q(x; a) Q(x; a) + �(r + V (y) �Q(x; a)) (2)Here  (0 �  < 1) is a discount parameter, and V (x)is given by: V (x) = maxb2actionsQ(x; b) (3)Note that Q(x; a) is updated only when taking actiona from state x. Selecting actions stochastically by (1)ensures that each action will be evaluated repeatedly.As the agent explores the state space, its estimateQ improves gradually, and, eventually, each V (x) ap-proaches: EfP1n=1 n�1rt+ng. Here rt is the rewardreceived at time t due to the action chosen at timet�1. Watkins and Dayan (1992) have shown that thisQ-learning algorithm converges to an optimal decisionpolicy for a �nite Markov decision process.
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prey hunterFigure 1: A 10 by 10 grid world.4 TASK DESCRIPTIONAll the tasks considered in this study involve hunteragents seeking to capture randomly-moving preyagents in a 10 by 10 grid world, as shown by Figure 1.On each time step, each agent (hunter or prey) hasfour possible actions to choose from: moving up, down,left, or right within the boundary. Initially, huntersalso make random moves as they have equal Q val-ues. More than one agent can occupy the same cell.A prey is captured when it occupies the same cell asa hunter (in case study 1 and 2) or when two hunterseither occupy the same cell as the prey or are next tothe prey (in case study 3). Upon capturing a prey, thehunter or hunters involved receive +1 reward. Huntersreceive �0:1 reward for each move when they do notcapture a prey. Each hunter has a limited visual �eldinside which it can locate prey accurately. Figure 2shows a visual �eld of depth 2. Each hunter's sensa-tion is represented by (x, y) where x (y) is the relativedistance of the closest prey to the hunter accordingto its x (y) axis. For example, (-2, 2) is a perceptualstate when the closest prey is in the lower left cornerof the hunter's visual �eld (see Figure 2). If two preyare equally close to a hunter, only one of them (chosenrandomly) will be sensed. If there is no prey in sight,a unique default sensation is used.Each run of each experiment consisted of a sequenceof trials. In the �rst trial of each run, all agents weregiven a random location. Afterwards, each trial beganwith only rewarded hunters in random locations. Eachtrial ended when the �rst prey was captured. Each runwas given a su�cient number of trials until the decisionpolicies of hunters converged (i.e., the performance ofhunters stabilized). I measured the average numberof time steps per trial in training where actions wereselected by the Boltzmann distribution, at intervals ofevery 50 trials. After convergence, I also measured theaverage number of time steps per trial in test whereactions were selected by the highest Q value, over atleast 1000 trials. Results were averaged over at least5 runs.The Q-learning parameters were set at � = 0:8,  =0:9, and T = 0:4. These values are reasonable for

A perceptual state represented by (-2, 2)

x

yFigure 2: A visual �eld of depth 2.these tasks. Task parameters include the number ofprey, the number of hunters, and the hunters' visual-�eld depth.Without learning, hunters move randomly with base-line performances for four di�erent prey/hunter tasksgiven in Table 1. The table shows the average num-ber of steps for random hunters to capture a prey over200 trials. I also tested the performances of indepen-dently learning hunters for the corresponding tasks.Table 1 gives their average number of steps to capturea prey in training calculated after a su�cient numberof trials, where the hunters' visual-�eld depth was 4.Clearly, learning hunters signi�cantly outperform ran-dom hunters. The real question is whether or not co-operation among learning hunters can further improvetheir performance.5 CASE 1: SHARING SENSATIONFirst, I study the e�ect of sensation from anotheragent. To isolate sensing from learning, I choose theone-prey/one-hunter task and add a scouting agentthat cannot capture prey. Later I extend this conceptto hunters that perform both scouting and hunting.I demonstrate that sensory information from another(scouting) agent is bene�cial if the information is rel-evant and su�cient for learning.The scout makes random moves. At each step, thescout send its action and sensation back to the hunter.Assume that the initial relative location between thescout and the hunter is known. Therefore, the huntercan incrementally update the scout's relative locationand also compute the location of the prey sensed bythe scout. For example, if the relative locations of aprey to the scout (known) and the scout to the hunter(sensed) are (-2, 2) and (2, 5) respectively, then therelative location of the prey to the hunter is (0, 7).To keep the same dimension of a state representation(i.e., still use (x, y)), I combine sensation inputs fromthe hunter and the scout as follows: use the hunter'ssensation �rst, if the hunter cannot sense any prey,then use the scout's sensation.Table 2 shows the average numbers of steps to capture
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Table 1: Average Number of Steps to Capture a Prey: Random vs. Independently Learning Hunters.N-of-prey/N-of-hunters 1/1 1/2 1/2 (joint task) 2/2 (joint task)Random hunters 123.08 56.47 354.45 224.92Learning hunters 25.32 12.21 119.17 100.61Table 2: Scouting vs. No Scouting.Hunter Visual Depth Scout Visual Depth Average Steps to Capture a PreyTraining Test2 no scouting 47.14 (�1.28) 49.49 (�1.60)2 2 46.33 (�1.39) 42.91 (�1.48)2 3 39.78 (�1.06) 32.08 (�1.22)2 4 32.67 (�1.03) 25.07 (�0.89)a prey in training after 2000 trials and the ones in testafter convergence with or without a scout. Their 90%con�dence intervals calculated by a t-test are listedin the parentheses. The hunter with a scout tookfewer steps in both training and test to capture aprey than the one without.1 As the scout's visual-�eld depth increases, the di�erence in their perfor-mances becomes larger. This observation held whenthe hunter's visual-�eld depth was given other values(other than 2). Based on this state representation, themaximumnumber of perceptual states in the 10 by 10grid world is 442 (= (2�10+1)2+1). After introducinga scout, the size of the state space for the hunter wase�ectively increased from 26 (= 52 + 1) to 442. Thisincrease was traded for extra sensory information andpaid o� in the end. In fact, when the scout's visual-�eld depth was 4, no obvious slowdown was observedafter only 50 trials.Once establishing the bene�t of additional sensory in-formation from a scout, I then extended this conceptto the one-prey/two-hunter task with each hunter act-ing as a scout for the other hunter. Table 3 gives thesimilar measures for both independent and mutual-scouting agents. Their 90% con�dence intervals cal-culated by a t-test and the resulting t-test compar-isons within each pair are given in the parentheses.As their visual-�eld depth increases, (a) both indepen-dent and mutual-scouting agents take fewer and fewersteps to capture a prey; (b) mutual-scouting agentsgradually outperform independent agents; and (c) theadvantage of mutual-scouting agents over independentagents shows up sooner in test than in training. As an1Although the average steps of the hunter in trainingwith a scout whose visual-�eld depth was 2 (= 46.33) isless than the one of the hunter without a scout (= 47.14),the di�erence is not signi�cant according to the t-test.

example, when the visual-�eld depth was 4, mutual-scouting hunters took, on the average, 8.83 steps intest to capture a prey comparing with 11.53 stepsfor independent hunters. However, when the visual-�eld depth was limited to 2, sharing sensory informa-tion hindered training, because a short-sighted scout-ing hunter could not stay with a prey long enough forthe other hunter to learn to catch up with the prey.This suggests that sensory information from anotheragent should be used prudently, and extra, insu�cientinformation can interfere with learning. Scouting alsoincurs communication cost. The information commu-nicated from a mutual-scouting agent to another agentper step is bounded by the size (in bits) of its sensa-tion and action representation. In this experiment, itis 2 log2(2Vdepth+1)+2 where Vdepth is the visual-�elddepth.6 CASE 2: SHARING POLICIES OREPISODESAssume that agents do not share sensation. If eachagent is adequate to accomplish a task (e.g., eachhunter can capture a prey by itself), is cooperationamong agents still useful? I studied several waysof sharing learned policies and episodes in the one-prey/two-hunter task. Hunters can either (1) use thesame decision policy or (2) exchange their individualpolicies at various frequencies. Episodes can be ex-changed (a) among peer hunters or (b) between peerand expert hunters. I will show that such cooperativeagents can speed up learning, measured by the aver-age number of steps in training, even though they willeventually reach the same asymptotic performance asindependent agents. This study presents the experi-mental results when the hunters' visual-�eld depth is
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Table 3: Two Independent Agents vs. Two Mutual-Scouting Agents.Visual Depth Average Steps to Capture a PreyTraining TestIndependent agents 2 20.38 (�0.57) 24.04 (�1.00)Mutual-scouting agents 2 25.20 (�0.79) (worse) 24.52 (�1.24) (same)Independent agents 3 14.65 (�0.53) 16.04 (�0.56)Mutual-scouting agents 3 14.02 (�0.75) (same) 12.98 (�0.65) (better)Independent agents 4 12.21 (�0.65) 11.53 (�0.61)Mutual-scouting agents 4 11.05 (�0.56) (better) 8.83 (�0.78) (better)
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Figure 3: Independent agents vs. same-policy agents.4. The conclusions when the visual-�eld depth is 2 or3 are similar to 4.One simple way of cooperating is that hunters use thesame decision policy. Although each hunter updatesthe same policy independently, the rate of updatingthe policy is multiplied by the number of hunters perstep. Figure 3 shows that when two hunters used thesame policy, they converged much quicker than twoindependent hunters did. The average informationcommunicated by each same-policy hunter per step isbounded by the number of the bits needed to describea sensation, an action and a reward.2 In this experi-ment, it is 2 log2(2Vdepth + 1) + 3.2I assume that only one agent keeps a decision policy.At each step, the rest of the involved agents send theircurrent sensation to the policy-keeping agent, receive cor-responding actions in return, and then send the rewards oftheir actions back to the policy-keeping agent.
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Figure 4: Independent agents vs. policy-averagingagents.If agents perform the same task, their decision policiesduring learning can di�er because they may have ex-plored the di�erent parts of a state space. Two hunterscan complement each other by exchanging their poli-cies and use what the other agent had already learnedfor its own bene�t. Assume that each agent can si-multaneously send its current policy to other agents, Iadopted the following policy assimilation: agents aver-age their policies at certain frequency. Figure 4 showsthe performance results when two hunters averagedtheir policies at every 10 steps, 50 steps, or 200 steps.All of them converged quicker than two independenthunters. One interesting observation is that when thevisual-�eld depth was 4, the best frequency was ev-ery 10 steps (see Figure 4) while when the visual-�elddepth was 2, the best frequency was every 50 steps(not shown here). In general, the information commu-nicated by each policy-exchanging hunter per step isbounded by (N � 1) � P � F where N is the number
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Figure 5: Independent agents vs. episode-exchangingagents.of participating hunters, P is the size of a policy (i.e.,number of perceptual states � number of actions �number of bits needed to represent a sensation, an ac-tion and a Q value), and F is the frequency of policyexchanging. When P or F is large, communicationcan be costly. On the other hand, unlike same-policyagents, a policy-exchanging agent can be selective inassimilating another agent's policy. For example, anagent could adopt another agent's decision only whenit did not have con�dence in certain actions.Instead of sharing learned knowledge such as a pol-icy, agents can share their episodes. An episode isa sequence of (sensation, action, reward) triples ex-perienced by an agent. I used the following episodeexchanging: when a hunter captured a prey, thehunter transferred its entire solution episode to theother hunter. The other hunter then \mentally re-played" the episode forward to update its own pol-icy. As a result, two hunters doubled their learningexperience. The middle curve in Figure 5 shows thespeedup in training of two hunters after exchangingtheir episodes. The average information communi-cated by each episode-exchanging hunter per step isbounded by (N � 1) � E where E is the number ofbits needed to represent a sensation, an action, anda reward (E = 2 log2(2Vdepth + 1) + 3 in this exper-iment). In addition to the exibility of assimilatingepisodes, exchanging episodes can be used by hetero-geneous reinforcement-learning agents as long as theycan interpret episodes (e.g., hunters can have di�er-ent visual-�eld depths). To demonstrate this point, Ilet two hunters learn from an expert hunter that al-ways moves towards the prey using the shortest path.Figure 5 shows signi�cant improvement for the two
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Figure 6: Summary.novice hunters when the episodes they received werefrom an expert hunter (see the bottom curve). Notethat an expert hunter could be just another hunterwho has already learned hunting skills. This resultdemonstrates another bene�t of learning in a coop-erative society where novices can learn quickly fromexperts by examples (Lin 1991, Whitehead 1991).Figure 6 summarizes the experimental results of thiscase study. Generally speaking, during the early phaseof training, cooperative learning outperforms indepen-dent learning, and learning from an expert outper-forms both. Their di�erences in performance are sta-tistically signi�cant according to t-tests. However,among di�erent ways of cooperation (excluding learn-ing from an expert), there is no conclusive evidencethat one performs better than the others. In termsof the average information communicated, if the num-ber of participating agents is limited to 2, exchangingepisodes is comparable to using the same policy. Ex-changing policy is plausible if the size of a policy issmall and the proper frequency of policy exchangingcan be determined.7 CASE 3: ON JOINT TASKSIn the previous two case studies, each hunter can cap-ture prey by itself. Here, I study joint tasks wherea prey can only be captured by two hunters who ei-ther occupy the same cell as the prey as or are nextto the prey. Hunters cooperate by either passively ob-serving each other or actively sharing their sensationsand locations. I demonstrate that cooperative agentscan learn to perform the joint task signi�cantly betterthan independent agents although they start slowly.
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Mutual-scoutingFigure 7: Typical runs for the 2-prey/2-hunter jointtask.Assume that the hunters' visual-�eld depth is 4 (again,the conclusions are similar when the visual-�eld depthis 2 or 3). Let us �rst consider the two-prey/two-hunter joint task. When two independent hunters weregiven this task, each hunter tended to learn to ap-proach a prey directly. When both hunters approachedthe same prey, they succeeded and received rewards.When they chased two di�erent prey, they failed andwere penalized. As training continued, their perfor-mance uctuated noticeably around the level of tak-ing, on the average, 101 steps to capture a prey (seethe top curve in Figure 7).The problem with independent hunters is that they ig-nore each other. They cannot distinguish the situationwhere another hunter is nearby from the one far away.If each hunter can also sense the other hunter, coopera-tive behavior can emerge from greedy learning hunters.To address this problem, I extended the sensation of ahunter to two pairs f(xprey; yprey)(xptn; yptn)g where(xprey; yprey) is the relative location (� visual-�elddepth) between a prey and the hunter, and (xptn; yptn)between a partner and the hunter. Note that the statespace is increased exponentially in terms of the numberof agents. A large state space means more state ex-ploration for a hunter, and slower learning. Neverthe-less, although starting slowly, such passively-observinghunters began to overtake independent hunters soonafter 400 trials, and eventually reduced the averagenumber of steps to only 49 (see the middle curve inFigure 7).Two hunters can cooperate passively by observing eachother in addition to prey. Given the encouraging re-sults from case study 1, I proceeded to let huntersalso actively share their sensory information. This
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Mutual-scoutingFigure 8: Typical runs for the 1-prey/2-hunter jointtask.means that the state space is further enlarged althoughthere is no increase in the dimension of a state rep-resentation. This enlargement made initial learningeven slower than passively-observing hunters. Yet,mutual-scouting hunters soon outperformed passively-observing agents after about 1400 trials, and settleddown at average 39 steps in training (see the bottomcurve in Figure 7). The average number of steps pertrial in test for independent, passively-observing andmutual-scouting hunters are 49, 42 and 34, respec-tively.People may wonder what would happen if there wasonly one prey in the joint task. Independent huntersmight do well because both hunters can just learnto approach the prey directly. This, however, is notthe case. By knowing where its partner is, a huntercan learn better approach (herding) patterns. Fig-ure 8 shows the typical runs of the three types ofhunters when there was only one prey. As you cansee, independent agents, passively-observing agents,and mutual-scouting agents settled down at average116, 84, and 76 steps in training, respectively. Al-though it is di�cult to analyze the hunters' speci�capproach patterns, the fact that cooperative huntersoutperformed independent hunters by at least 32 stepsper trial suggests the existence of such patterns.8 CONCLUSIONS AND FUTUREWORKThis paper demonstrates that reinforcement-learningagents can learn cooperative behavior in a simulatedsocial environment. Although this paper's results are
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based on simulated prey/hunter tasks, I believe theconclusions can be applied to cooperation among au-tonomous learning agents in general. This paper iden-ti�es three ways of agent cooperation, i.e., by com-municating instantaneous information, episodic expe-rience, and learned knowledge. Speci�cally, cooper-ative reinforcement-learning agents can learn fasterand converge sooner than independent agents via shar-ing learned policies or solution episodes. Coopera-tive agents can also broaden their sensation via mu-tual scouting, and can handle joint tasks via sens-ing other partners. On the other hand, this paperalso shows that extra sensory information can interferewith learning, sharing knowledge or episodes comeswith a communication cost, and it takes a larger statespace to learn cooperative behavior for joint tasks.These tradeo�s must be taken into consideration forautonomous and cooperative learning agents.This research raises several important issues of multi-agent reinforcement learning. First, sensation mustbe selective because the size of a state space can in-crease exponentially in terms of the number of involvedagents. One heuristic used here is that each hunteronly pays attention to the nearest prey (or hunter).Can such selective sensation strategies be learned?Second, on a related issue, one needs to use general-ization techniques to reduce a state space and improveperformance for complex, noisy tasks. Third, learningopportunities are hard to come by for nontrivial coop-erative behavior. If a prey were smart enough to knowhow to escape, it could take a long time for huntersto get enough learning experience. How can learningbe more focused (e.g., by learning from a teacher)?Fourth, information exchanging among agents incurscommunication costs. Can agents learn to communi-cate? This learning task gets complicated when thecontent of communication can be instantaneous infor-mation, episodic experience, and learned knowledge.Fifth, other cooperative methods need to be explored.For example, what if hunters share their action inten-tions to avoid collision, or share their rewards to sus-tain hunger? Finally, can homogeneous agents learnto have job division and to specialize di�erently? Canheterogeneous agents (such as scouting agents vs. blindhunting agents) learn to cooperate? These are direc-tions for future work.AcknowledgmentsI am grateful to Rich Sutton, Steve Whitehead, andChris Matheus for useful discussions and careful com-ments. I would like to thank Shri Goyal for his supportof this research.ReferencesBellman, R. E. (1957). Dynamic Programming.Princeton University Press, Princeton, NJ.
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